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Abstract—Reed and Mullineux applied in [3] a semi-numerical procedure for determining the quasi-

steady state solution of periodically varying phenomena. In the present study this problem is reduced

to a system of matrix equations without using any approximation. The numerical results are compared
with those of [3].

NOMENCLATURE
Am(N), B,,(N), boundary coefficient functions
defined on §;
Cps p x 1 matrices of which c,,; are elements
derived in the text;
D,., p x p matrices of which d,,; are elements

derived in the text;

quasi-steady state distribution function

inV;

, 1,2,3,...,00;

km(M), Wa(M), p(M), prescribed functions defined
inV;

M, pointin V;

m, lor2;

N, point on S;

n, outward normal of S;

P,(M, 1), internal source functions per unit time
per unit volume of V;

Jm(M),

P, number of transient terms in infinite
series solutions;

S, boundary of V;

T.(M, 1), unsteady temperature distribution;

v, finite region of arbitrary geometry;

Bn(7), (7)., prescribed functions defined in t;
T, time variable;

Q.(N, 1), source functions on §;

Vmi(M), eigenfunctions in M-space;

Homi » eigenvalues;

div( ), divergence operation in M-space;
grad( ), gradient vector in M-space.

Dimensionless criteria

Bi = «l, Biot number;
T .
Fo = i Fourier number;

z = x/l, dimensionless coordinate;

T..(z, Fo) = 6/6,, dimensionless temperature;

where

0, temperature difference;

Bo, fixed temperature difference at one end
of cylinder;

X, distance along cylinder from this end;

, length of cylinder;

m, contact (m = 1) and separation (m = 2)
times;

k.x, thermal constants of cylinder and film,
respectively.

1. INTRODUCTION

USING an analogue computer Howard and Sutton
[1,2] investigated the heat transfer through two bars,
the surfaces of which are meeting and separating
according to a regular cycle.

Recently Reed and Mullineux [3] are discussing
again this problem. They solve the equation of heat
conductivity separately for the two intervals of one
cycle. The analytical solutions, obtained for these two
cases are not new [4] and in Appendix of [3] are
repeated well-known facts from Ozisik’s textbook [5].

The essence of the proposed by Reed and Mullineux
[3] semi-numerical procedure is to divide the length of
the bar into s equal intervals and using the trapezoidal
approximation rule to obtain a system of two matrix
equations for the determination of the two temperature
distributions in the moments of closure and separation
in the points of approximation.

The authors of [3] mark that “the problem is simple
to define but not simple to solve”. As a matter of fact as
will be shown in the present study, the problem is
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easily reduced to a system of matrix equations without
using any approximation.

The mathematical problem, defined in [3],
analogous to the one, defined in the theory of
regenerators. As early as 1928 Heiligenstiadt wrote
down a set of equations for the cyclic steady state of
a regenerator and indicated an approximation solution
[6]. Consequently, the general method, presented here,
can be useful in studying some of the problems defined

in[7]

2. STATEMENT AND SOLUTION OF THE PROBLEM

Let us suppose that in a finite region of arbitrary
geometry take place subsequently two independent
processes of transfer, described through the differential
equations

0T (M. 1)
Pl T) Wi M)A vvvvv
(‘[
= dlv[km(M)grad Tm(M~ ‘C)] + [Bm(‘c)wm(M) - pm(M)]
x T(M, 1)+ Py(M, 1),
0t <1, m=1or 2 (1)
subject to the following conditions:
T.(M.0) = f,.(M) 2
4,0 D B NN D = 0N, ()
an

Since the quasi-steady state is reached, the final
temperature distribution for an arbitrary interval turns
out to be the initial distribution for the next one. Con-
sequently, one can write down

TAM, 1) = f3-ml {4)
[t is necessary to find out the potentials 7,,(M, 1) and
the unknown distributions f,,(M).
The solution of equation (1) under the conditions (2)
and (3) is obtained in [8] and has the form:

&

TWM, 1) = Z Grithmi( M

X e—}‘ni(t){f wm(M)l//mt(M)fm(M)dV
v
" gmT)
+ .
J‘O (Pm(f)
-1
Gi = {J wm(M)lﬁ,ﬁi(M)dV} (6)
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where
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+j l//mi(M)Pm(M, 'L')dV (8)
v

In expressions (5)—(8) u,; and \,,; are the eigenvalues
and eigenfunctions of Sturm-Liouville’s problem,
which are supposed to be known.

Having in mind (4), from the solution (5) it follows
that:

f3~m(M) = Z mll//ml
(MWmi(M) fr( M) dV

X e‘hm(fm){j W
.
+ J "I dr}. 9)
0o PmlD)

To determine the potentials T,,(M, 1), it is sufficient
to know only the expressions

Xmi = J\V wm(M)IJ/mi(M)f (M

In order to find them, one can multiply (9) by

ydv. (10)

w3 m(MW3_,,;(M) and integrate, after which one
obtains
i N
X3-mj = Cmj+ Z i X i (p— ) (11)
i=1
where
14 Tm
gml)
Cmj = ) it T ehmid d g (12)
! i; ! J() Pn(T)
dmji:GmlJ‘ Wi mM)wS mj )
X Ymi(M)dV g~ i) (13)
The system (11) can be written in a matrix form
X3,m= Cm+Dme (14)
and has the following solution [3]:
Xm:(I_D3*mDm)7l(D3*m(7m+CS*m) “5)

where [ is the unit matrix.

Consequently, from (15) one can calculate the ex-
pressions (10) and after that from (5) one can obtain the
unknown distributions T,(M, t) and f3_.(M).

The same method is easily applied to the solutions,
given in [8], for both cases: when p(M)=0 and
B(N) = 0, and when the convergence of the series is
improved through the pseudo-steady solution of order
m. An analogical approach can be applied to a region
composed of ¢ subregions, which periodically come in
and out of contact. But in this case it is necessary to
solve a system of g+ 1 matrix equations.



Quasi-steady state temperature distribution

3. THE HEAT FLOW PROBLEM OF [3]}

As an application of the general theory consider the
special case of [3], which can be written in the
dimensionless form:
0Tz, Fo) &%T,(z, Fo)

oFo cz? '

0<Fo<Fo, 0<:z<gI1, (16)

T(z,0) = ful2) (17)

T,..(0, Fo) =1 (18)

M+(2—M)BiTm(l.F0) =0 (19)
0z

Ton(2, FO) = f3-m(2). (20)

The analytical solution of equation (16) under condi-
tions (17)—(19) is easily obtained as a very special case
of the solution given in [8]. We prefer to take it directly
from [4]:

(2—m)Bi
e 7
1+(2—m)Bi

d (2—m)Bi !

+ ) 24l 5
i; { pimi+ [(2—m)Bi]?

X SIN () € Hmi Fo

1
X {j sin(ymiz)fm(z)dz—i} 2n
0 Homi

where u,,; are the roots of the characteristic equation

Tz, Fo) = 1—

sin
Cos,u,,,+(2—m)BiM =
Fom

The solutions (21), in contrast to those given in (3),
have better convergence of the series.
After introducing the unknowns

0. (22)

1
Xmi =J SIN(fin; 2) fm(z) dz (23)
0
and multiplying equation (21) by sin(,,z), followed by
an integration over the interval from 0 to | and using
equation (20), one obtains an equation, identical to
(I11), where

1 !—co (2—m)Bi
Cpj = ———<1—cospz_p ;i ——————
T Homi 2 mBi
1 P
<Sln/v¢3—mj 005#37"”)} dmji (24)
.uS-m_, i=1 Mmi
2—m)Bi !
dpy=214— BB
Ui +[(2—m)Bi]

x Ui COS Ly SIN Y3 — 1y j— 13—, jCOS ﬂS'M.jSin Homi

3 2
H3—m,j— Umi

X @~ Hini Fom

(25)
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In (3) there is a numerical example, which corre-
sponds to the case: Bi =20, Fo; = Fo, = 0-078125.
On the base of equations (21)-(25) this case was
calculated again. In the calculations the order p of the
matrices C and D was increased consequently up when
five symbols after the decimal point in the distributions
Jm(z) were repeated. It was found that the results for
p = 3and p = 4 coincide. They are given in Table 1 and
fully correspond to the data, presented in the figures in

[3].

Table 1
z f212) filz)
0-00 1-00000 1-00000
005 096014 0-95829
010 0-92022 0-91664
015 0-88016 0-87511
0-20 0-83987 0-83378
025 079924 0-79275
0-30 075816 0-75218
0-35 071647 0-71223
040 0-67401 0-67313
045 0-63060 0-63515
050 0-58605 0-59859
055 0-54019 0-56381
060 049286 0-53118
065 044394 0-50110
070 039335 0-47398
075 0-34107 0-45021
0-80 0-28716 043018
0-85 023175 041421
090 017502 0-40260
095 011725 0-39554
1-00 0-05875 0-39317
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CHAMP DES TEMPERATURES QUASI-STATIONNAIRE DANS UN DOMAINE
FINI AVEC LES CONDITIONS AUX LIMITES PERIODIQUES

Résumé— Reed et Mullineux appliquent en [3] des procédés semi-numériques pour trouver une solution
quasi-stationnaire de phénoménes périodiques. Dans cet article le probléme est réduit a une systéme
matriciel, que I'on résout sans approximation. Les résultats numériques sont comparés a ceux de [3].

QUASISTATIONARE TEMPERATURVERTEILUNG IN EINEM BEGRENZTEN GEBIET
FUR PERIODISCH VERANDERLICHE RANDBEDINGUNGEN

Zusammenfassung—Reed und Mullineux haben in [3] ein halbnumerisches Verfahren zur Bestimmung

der quasistationdren Losung der periodisch verdnderlichen Phdnomene verwendet. In der vorliegenden

Arbeit wird dieses Problem ohne irgendeine Approximation durch ein System aus Matrizengleichungen
dargestellt. Die numerischen Ergebnisse werden mit den in [3] erhaltenen verglichen.

KBA3UCTAUMOHAPHOE PACMPEAEJIEHUE TEMNEPATYPbLI B KOHEYHOM
OBJIACTH NMPU NMEPUOOAUYECKNX BO3JENUCTBUAX

AnnoTtauus — B pabote 3] Pua u MIoannHO HCMOsib30BAIH YHCTEHHO-AHATTHTHYECKHI MeTOn ANA

HaxXOXACHHUS KBAa3HCTAUMOHAPHOTO PELICHHUA B IMEPHOAMYECKUX Npoueccax. B 3Tolt craThe 3alada

6¢3 nomouIn Kakux-1ubo anmmpOKCHMAaLMA CBOAHTCS K CUCTEME MAaTPHYHbLIX YpaBHEHHI. YHC/IeHHBIE
pe3yNbTaThl CPABHUBAIOTCA C JaHHBIMH paboTsr [3].



