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Abstract-Reed and Mullineux applied in [3] a semi-numerical procedure for determining the quasi- 
steady state solution of periodically varying phenomena. In the present study this problem is reduced 
to a system of matrix equations without using any approximation. The numerical results are compared 

with those of [3]. 

NOMENCLATURE 

A,(N), B,,,(N), boundary coefficient functions 
defined on S; 

c ln> p x 1 matrices of which c,,,~ are elements 
derived in the text; 

D mr p x p matrices of which d,ji are elements 
derived in the text; 

fm(M), quasi-steady state distribution function 
in V; 

1, 1,2,3 ,..., CO; 
k,,,(M), w,,,(M), p,,,(M), prescribed functions defined 

M, 
m, 
N, 

z;,(M. 7), 

S, 

T,(M, 7), 

V, 

in V; 

point in V; 

1 or2; 

point on S; 
outward normal of S; 
internal source functions per unit time 

per unit volume of V; 

number of transient terms in infinite 

series solutions; 
boundary of V; 

unsteady temperature distribution; 
finite region of arbitrary geometry; 

pm(~), c&r), prescribed functions defined in 7; 

7, time variable; 

R,(N, T), source functions on S; 

J/,,(M), eigenfunctions in M-space; 

Ati> eigenvalues; 

div( ), divergence operation in M-space; 
grad( ), gradient vector in M-space. 

Dimensionless criteria 

Bi = al, Biot number; 

Fo=;, Fourier number; 

z = x/l, dimensionless coordinate; 

T,(z, Fo) = @PO, dimensionless temperature; 

where 

temperature difference; 
fixed temperature difference at one end 

of cylinder; 

distance along cylinder from this end; 

length of cylinder; 
contact (m = 1) and separation (m = 2) 

times; 
thermal constants of cylinder and film, 
respectively. 

1. INTRODUCTION 

USING an analogue computer Howard and Sutton 

[l, 21 investigated the heat transfer through two bars, 

the surfaces of which are meeting and separating 
according to a regular cycle. 

Recently Reed and Mullineux [3] are discussing 
again this problem. They solve the equation of heat 
conductivity separately for the two intervals of one 
cycle. The analytical solutions, obtained for these two 

cases are not new [4] and in Appendix of [3] are 
repeated well-known facts from Ozisik’s textbook [5]. 

The essence of the proposed by Reed and Mullineux 
[3] semi-numerical procedure is to divide the length of 
the bar into s equal intervals and using the trapezoidal 
approximation rule to obtain a system of two matrix 
equations for the determination of the two temperature 
distributions in the moments of closure and separation 
in the points of approximation. 

The authors of [3] mark that “the problem is simple 
to define but not simple to solve”. As a matter of fact as 
will be shown in the present study, the problem is 
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easily reduced to a system of matrix equations without 
using any approximation. 

The mathematical problem, defined in [3], is 

analogous to the one. defined in the theory of 
regenerators. As early as 1928 Heiligenstadt wrote 

down a set of equations for the cyclic steady state of 

a regenerator and indicated an approximation solution 
[6]. Consequently. the general method, presented here, 

can be useful in studying some of the problems defined 

in [7]. 

2. STATEMENT AND SOLUTION OF THE PROBLEM 

Let us suppose that in a finite region of arbitrary 
geometry take place subsequently two independent 

processes of transfer, described through the differential 
equations 

= Wk,W)wd TAM. 7)1+ [h,d7h,U4) - P,(M)] 

x T,(M. 7) + PmW, 71, 

0<7<7,. m = 1 or 2 (1) 

subject to the following conditions: 

T,(M, 0) = f&W (2) 

(‘T,(N, 7) 
A,(N) ~-~ 

?n 
+ B,(N)T,(N, 7) = R,(N. 7). (3) 

Since the quasi-steady state is reached, the final 
temperature distribution for an arbitrary interval turns 

out to be the initial distribution for the next one. Con- 

sequently. one can write down 

Kl(M, 7,) = f3 -m(W. (4) 

It is necessary to find out the potentials T,(M, 7) and 
the unknown distributions fm(M). 

The solution of equation (1) under the conditions (2) 
and (3) is obtained in [8] and has the form: 

T,(M, 7) = t &i$,i(M) 
i=L 

where 

kni(7) = 

J I’ 
In expressions (5)-(8) ~L,i and I+!J,,,~ are the eigenvalues 

and eigenfunctions of SturmPLiouville’s problem. 
which are supposed to be known. 

Having in mind (4). from the solution (5) it follows 

that: 

.f3_t+t(M) = 2 G,i$,i(M) 
i=l 

Jo cpm(7) ) ’ 

To determine the potentials T,(M. T), it is sufficient 
to know only the expressions 

In order to find them, one can multiply (9) by 
w~_,(M)$~_,,(M) and integrate, after which one 

obtains 

X3-m,j = C,j+ i dmji.Y,i. (P-+~w) (11) 
i=l 

where 

dmj, = Gmi s Wj - nz(W$j -m,j(W 
” 

x &,i(M)dVe~hmJ’m). (13) 

The system (11) can be written in a matrix form 

X3_,,,= C,i-D,,,X, (14) 

and has the following solution [3] : 

X,=(I-D,~,D,)~'(D,~,C~+C,~,) (15) 

where I is the unit matrix. 
Consequently, from (15) one can calculate the ex- 

pressions (10) and after that from (5) one can obtain the 
unknown distributions TJM, 7) and f3 -,(M). 

The same method is easily applied to the solutions, 
given in [8], for both cases: when p(M) = 0 and 
B(N) = 0, and when the convergence of the series is 
improved through the pseudo-steady solution of order 
m. An analogical approach can be applied to a region 
composed of q subregions, which periodically come in 
and out of contact. But in this case it is necessary to 
solve a system of q + 1 matrix equations. 
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3. THE HEAT FLOW PROBLEM OF [3] 

As an application of the general theory consider the 

special case of [3], which can be written in the 

dimensionless form: 

&gz, Fo) PT,(z, Fo) 

~Fo iz2 1 

O<FodFo,, O<z<l. (16) 

L(z, 0) = .Mz) (17) 

T,(O, Fo) = 1 (18) 

dT,(l, Fo) 

CiZ 
+ (2-m)BiT,(l, Fo) = 0 (19) 

T& Font) = f3 -m(z). (20) 

The analytical solution of equation (16) under condi- 

tions (17)-(19) is easily obtained as a very special case 

of the,solution given in [S]. We prefer to take it directly 
from [4] : 

T’,(z, Fo) = 1 - 
(2-m)Bi 

1+(2-m)BiZ 

(2 - m)Bi -1 

&i + [(2 - m)Bi12 

x sin(pmiz) e-fl’8ro 

{I 

1 

X sin(~,iz)fm(z) dz - L (2 1) 
0 

where P,,,~ are the roots of the characteristic equation 

W4J 
cos,u,+(2-m)Bip = 0. (22) 

Pm 

The solutions (21), in contrast to those given in (3). 

have better convergence of the series. 
After introducing the unknowns 

s 

I 
.x,i = sin(pl,i4fi,(Z) dz (23) 

0 

and multiplying equation (21) by sin(p,jz), followed by 
an integration over the interval from 0 to 1 and using 
equation (20), one obtains an equation, identical to 
(1 l), where 

(2 - m)Bi 

1+(2-m)Bi 

- f: &Imji (24) 
i=l hi 

x FS PL,i sin P3 -m. j - P3 -m, j COS P3 -m. j sin ,UL,i 
2 

P3 - m. j - di 

x e-d8~om, (25) 

In (3) there is a numerical example, which corre- 

sponds to the case: Bi = 20, FoI = Fez = 0.078125. 
On the base of equations (21)-(25) this case was 

calculated again. In the calculations the order p of the 

matrices C and D was increased consequently up when 
five symbols after the decimal point in the distributions 
&(z) were repeated. It was found that the results for 

p = 3 and p = 4 coincide. They are given in Table 1 and 

fully correspond to the data, presented in the figures in 

PI. 

Table I 

0.00 1~00000 1~00000 
0.05 0.96014 0.95829 
0.10 0.92022 0.91664 
0.15 0.88016 0.87511 
0.20 0.83987 0.83378 
0.25 0.79924 0.79275 
0.30 0.758 16 0.75218 
0.35 @71647 0.71223 
0.40 0.67401 0.67313 
0.45 0.63060 0.63515 
0.50 0.58605 0.59859 
0.55 0.54019 0.56381 
0.60 0.49286 0.53118 
0.65 0.44394 0~50110 
0.70 0.39335 0.47398 
0.75 0.34107 0.45021 
0.80 @28716 0.430 18 
0.85 0.23 175 0.41421 
0.90 0. I 7502 0.40260 
0.95 0.11725 0.39554 
1 ,oo 0.05875 0.393 17 
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CHAMP DES TEMPERATURES QUASI-STATIONNAIRE DANS UN DOMAINE 
FINI AVEC LES CONDITIONS AUX LIMITES PERIODIQUES 

Rksum&Reed et Mulhneux appliquent en [3] des procedes semi-numtriques pour trouver une solution 
quasi-stationnaire de phenomenes periodiques. Dans cet article le probltme est reduit a une systeme 
matriciel, que I’on r&out sans approximation. Les resultats numeriques sont compares a ceux de [3]. 

QUASISTATIONARE TEMPERATURVERTEILUNG IN EINEM BEGRENZTEN GEBIET 
FUR PERIODISCH VERANDERLICHE RANDBEDINGUNGEN 

Zusammenfassung-Reed und Mullineux haben in [3] ein halbnumerisches Verfahren zur Bestimmung 
der quasistationaren Losung der periodisch verlnderlichen Phanomene verwendet. In der vorliegenden 
Arbeit wird dieses Problem ohne irgendeine Approximation durch ein System aus Matrizengleichungen 

dargestellt. Die numerischen Ergebnisse werden mit den in [3] erhaltenen verglichen. 

KBA3MCTAUMOHAPHOE PACI-IPEJIEJIEHME TEMIIEPATYPbl B KOHEYHOfi 
06JIACTM IlPM IIEPMOAMYECKMX B03JJEtiCTBMJ?X 

AtmoTaumr- B pa6oTe [3] Pun H MKWIHHO HCrIOnb30BanW WCneHHO-aHamiTti'leCK&iii MeTOn aim 

HaXOwleHHR KBa3HCTaUHOHapHO~O petueHm B nepHomiYecKHx npoueccax. B 3TOi-i CTaTbf2 3ana9a 
6e3 nOMOUH KaKkix-nn60 arInpOKCllMaUHCiCBOnk4TCff KCClCTeMe MaTpW'IHbIXypaBHeH88.YwCneHHbIe 

pe3ynbTaTblCpaBHkiBatOTCfl C LtaHHblMH pa6OTbl[3]. 


